Math 246C Lecture 23 Notes

Daniel Raban

May 23, 2019

1 Hömander's Theorem for Solving the $\overline{\partial}$ -Equation in One Variable

1.1 Completion of the proof of Hömander's theorem

We want to solve $\overline{\partial} u = f$ on $\Omega \subseteq \mathbb{C}$. Last time, we were proving the following observation:

Proposition 1.1. Let $f \in L^2_{loc}(\Omega)$, and let C > 0 be constant. Then there exists a $u \in L^2_{loc}(\Omega)$ such that $\overline{\partial}u = f$ and $\int |u|^2 e^{-\varphi} L(dz) \leq C$ if and only if

$$\left|\int f\overline{\beta}e^{-\varphi} L(dz)\right| \le C \int |\overline{\partial}_{\varphi}^*\beta|^2 e^{-\varphi} L(dz) \qquad \forall \beta \in C_0^{\infty}(\Omega)$$

Proof. (\Leftarrow): Consider the linear map $F : \overline{\partial}_{\varphi}^* C_0^{\infty}(\Omega) \to \mathbb{C}$ given by $F(\overline{\partial}_{\varphi}^* \beta) = \int f \overline{\beta} e^{-\varphi}$. Then

$$|F(\overline{\partial}_{\varphi}^*\beta)| \le C^{1/2} \|\overline{\partial}_{\varphi}^*\beta\|_{L^2},$$

By the Hahn-Banach theorem, F extends to a linear continuous map on L^2_{φ} with the norm $\leq C^{1.2}$. Thus, there exists a $u \in L^2_{\varphi}$ with $||u||_{L^2_{\varphi}} \leq C^{1/2}$ such that $F(g) = \langle g, h \rangle_{L^2_{\varphi}}$ for all $g \in L^2 \varphi$. In particular, if $g = \overline{\partial}^*_{\varphi} \beta$,

$$\int f\overline{\beta}e^{-\varphi} = \langle \overline{\partial}_{\varphi}^*\beta, u \rangle_{L^2_{\varphi}} \qquad \forall \beta \in C_0^{\infty}.$$

We get

$$\int f \,\overline{\beta} e^{-\varphi} = -\int u \partial_{\overline{z}} (e^{-\varphi\overline{\beta}}).$$

for all β . So we get that $\overline{\partial}u = f$ weakly.

We can now complete the proof of Hörmander's theorem.

Theorem 1.1 (Hörmander¹). Let $\Omega \subseteq \mathbb{C}$ be open, and let $\varphi \in C^{\infty}(\Omega)$ be strictly subharmonic: $\Delta \varphi > 0$ in Ω . Then, for any $f \in L^2_{loc}(\Omega)$ such that

$$\int \frac{|f|^2}{\varphi_{z,\overline{z}}''} e^{-\varphi} L(dz) < \infty,$$

there exists a weak solution $u \in L^2_{loc}(\Omega)$ to $\frac{\partial u}{\partial \overline{z}} = f$ such that

$$\int_{\Omega} |u|^2 e^{-\varphi} L(dz) \leq \int_{\Omega} \frac{|f|^2}{\varphi_{z,\overline{z}}''} e^{-\varphi} L(dz)$$

Proof. We need to show that

$$\left|\int f\overline{\beta}e^{-\varphi}\right|^2 \le C \|\overline{\partial}_{\varphi}^*\beta\|_{L^2_{\varphi}}^2 \qquad \forall \beta \in C_0^{\infty}.$$

We need a lower bound for $\|\overline{\partial}_{\varphi}^*\beta\|_{L^2_{\varphi}}^2$:

In general, let H be a Hilbert space, and let $T \in \mathcal{L}(H, H)$. Then

$$\begin{aligned} \|T^*x\|^2 &\ge \|T^*x\|^2 - \|Tx\|^2 = \langle T^*x, T^*x \rangle - \langle Tx, Tx \rangle \\ &= \langle TT^*x, x \rangle - \langle T^*Tx, x \rangle \\ &= \langle [T, T^*]x, x \rangle \,, \end{aligned}$$

where $[T, T^*] = TT^* - T^*T$ is the commutator of T, T^* . In our case, $H = L_{\varphi}^2$, $T = \overline{\partial}$, and $T^* = \overline{\partial}_{\varphi}^* = -\partial_z + \partial_z \varphi$. So The commutator is

$$[\overline{\partial}, \overline{\partial}_{\varphi}^{*}] = [\overline{\partial}, -\partial + \partial\varphi] = [\overline{\partial}, \partial] + [\overline{\partial}, \partial\varphi].$$

Compute for $\beta \in C_0^\infty$:

$$[\overline{\partial},\partial\varphi]\beta = \overline{\partial}(\partial\varphi\beta) - \partial\varphi\overline{\partial}\beta = \underbrace{(\overline{\partial}\partial\varphi)}_{\Delta\varphi/4>0}\beta.$$

We get that

$$|\overline{\partial}_{\varphi}^{*}\beta||_{L^{2}_{\varphi}}^{2} \geq \frac{1}{4} \int \Delta \varphi |\beta|^{2} e^{-\varphi} \qquad \forall \beta \in C_{0}^{\infty}(\Omega).$$

It follows by Cuachy-Schwarz in L^2_{φ} that

$$\left|\int f\overline{\beta}e^{-\varphi}\right| \leq \left(\int \frac{|f|^2}{\Delta\varphi}e^{-\varphi}\right) \underbrace{\left(\int \Delta\varphi |\beta|^2 e^{-\varphi}\right)}_{\leq 4\|\overline{\partial}_{\varphi}^*\beta\|_{L^2_{\infty}}^2}.$$

¹This result, unlike the other results we have been proving, is fairly recent. It was proven in 1965.

Finally, we get that there exists some $u \in L^2_{\varphi}$ such that $\overline{\partial} u = f$ and

$$\|u\|_{L^2_{\varphi}}^2 \le 4 \int \frac{|f|^2}{\Delta \varphi} e^{-\varphi}.$$

Remark 1.1. $\overline{\partial}_{\varphi}^{*}C_{0}^{\infty}(\Omega) \subseteq L_{\varphi}^{2}$: we obtain $u \in \overline{\overline{\partial}_{\varphi}^{*}C_{0}^{\infty}(\Omega)}$ such that if $h \in \ker(\overline{\partial}) \cap L_{\varphi}^{2}$ (i.e. h is holomorphic), then

$$0 = \left\langle \overline{\partial}h, \beta \right\rangle = \left\langle h, \overline{\partial}_{\varphi}^* \beta \right\rangle_{L^2_{\varphi}} \qquad \forall \beta \in C_0^{\infty}.$$

So $u \perp \ker(\overline{\partial}) \cap L^2_{\varphi}$. Thus, we have found a solution of $\overline{\partial}u = f$ of minimal norm in L^2_{φ} .

1.2 Weakening the assumptions of Hörmander's theorem

Assume that $\varphi \in C^{\infty}(\Omega)$ is just subharmonic: $\Delta \varphi \geq 0$. Apply Hörmander's theorem to

$$\psi(z) = \varphi(z) + a \log(1 + |z|^2), \qquad a > 0.$$

We can estimate (setting r = |z|):

$$\Delta \psi(z) \ge a \underbrace{\Delta \log(1+|z|^2)}_{=(\partial_r^2 + \frac{1}{r}\partial_r)(\log(1+r^2)))} = \frac{4}{(1+r^2)^2}.$$

We get that $\overline{\partial} u = f$ has a solution $u \in L^2_{\text{loc}}$ such that

$$a \int_{\Omega} |u|^2 e^{-\varphi} (1+|z|^2)^{-a} \le \int |f|^2 e^{-\varphi} (1+|z|^2)^{2-a}$$

for all subharmonic $\varphi \in C^{\infty}$.

It turns out that the same estimate is valid for any subharmonic function, not just ones in C^{∞} .

Theorem 1.2. Let $\Omega \subseteq \mathbb{C}$ be open and connected, and let $\varphi \in SH(\Omega)$ with $\varphi \not\equiv -\infty$. Let a > 0, and assume that $f \in L^2_{loc}$ is such that

$$\int |f|^2 e^{-\varphi} (1+|z|^2)^{2-a} < \infty$$

Then there exists a u solving $\overline{\partial} u = f$ such that

$$a \int_{\Omega} |u|^2 e^{-\varphi} (1+|z|^2)^{-a} \le \int |f|^2 e^{-\varphi} (1+|z|^2)^{2-a}.$$

We will prove this next time.

Remark 1.2. Let $f \in L^2_{\text{loc}}(\Omega)$. Then there is a $u \in L^2_{\text{loc}}(\Omega)$ solving $\overline{\partial} u = f$: there exists a $\varphi \in C(\Omega) \cap \text{SH}(\Omega)$ such that $f \in L^2(\Omega, e^{\varphi})$ (that is, $\int |f|^2 e^{-\varphi} < \infty$: for $\Omega \neq \mathbb{C}$, take

$$\varphi_0(z) = -\log(\operatorname{dist}(z, \Omega^c)),$$

which is subharmonic in Ω with the property that $\varphi_0(z) \to \infty$ as $z \to \partial \Omega$. Composing φ_0 with a suitable convex increasing function, we get φ such that the bound holds.